Conducting simple Emission Scenarios

Philip Peck 28.02.2007

Outline

Definitions

- Review of the bottom-up emission factor approach
 - Modeling future activity rates
 - Modeling future emission factors
 - Modeling technology penetration rates
- Models and tools for emission scenarios

Feedback obtained after the July 2006 workshop

About which topics would you like to learn more to support your professional work?

How to conduct an Emission Scenario

Feedback obtained after the July 2006 workshop

About which topics would you like to learn more to support your professional work?

Tools and modeling approaches for emission scenarios

the international institute for industrial environmental economics Lund University, Sweden

What are emission scenarios?

A plausible quantitative description of how emissions in the future may develop, based on a coherent and internally consistent set of assumptions ("scenario logic") about key relationships and driving forces.

(IPCC)

Models and tools

- Emission scenarios typically use quantitative models built from a number of mathematical equations.
- A model is a representation of a system. A good model behaves sufficiently like the real system that conclusions can be drawn from the model's behaviour to aid in making decisions about the real system.
- A tool is a PC software that computes the equations of the model.

Integrated Assessment Modeling (IAM)

- "An interdisciplinary process of structuring knowledge elements from various scientific disciplines in such a manner that all relevant aspects of a complex societal problem are considered in their mutual coherence for the benefit of decision-making" (Rotmans, 1998).
- Emission scenarios are typically one component of Integrated Assessment Models for air quality management.

General approaches for emission scenarios

socio-economic

- correlate emissions with socio-economic time series, such as GDP development, without accounting in detail for technological change
- o top-down approach
- technology based
 - o considers explicitly technological change
 - emission factor approach is widely used, mainly due to the fact that technological change became a prevailing parameter
 - bottom-up approach, can be rather detailed and resourceintensive

Technology-based, bottom-up approach

Technology-based, bottom-up approach

The fundamental formula

E: emissions

- A: activity rate
- F: process level emission factors
- P: activity share or penetration rate of a technology within a sector
- k: technology type

Source: EEA

The fundamental formula

Data sources for emission inventories (PAST)

- E: emissions
- A: activity rate
- F: process level emission factors
- P: activity share or penetration rate of a technology within a sector
- k: technology type

The fundamental formula

Data sources for emission inventories (PAST)

Lund University, Sweden

- E: emissions
- A: activity rate
- F: process level emission factors
- P: activity share or penetration rate of a technology within a sector
- k: technology type

Key assumptions & data quality

- Some aspects of the future are relatively easy to predict
 - e.g. a 20 year old consumer of 2025 is already born
 - economic growth can be derived from the experience of other comparable economies in the past
 - long planning and investment horizons in the energy sector make this sector transform at slow rates
- In other fields, uncertainty is much higher
 - political stability and overall policy directions
 - energy and world oil prices
 - o technological innovation

The link between inventories and projections / scenarios

 Each emission projection must be based on an existing emission inventory as a starting point.

The link between inventories and projections / scenarios

- Each emission projection must be based on an existing emission inventory as a starting point.
- The main difference between an emission inventory and an emission projection / scenario is the <u>time</u> reference.

There are many driving forces behind future emissions...

- Population
- Economic and social development
- Energy
- Technology
- Agriculture and land-use

Policies

Data collection and modeling of causal interrelations is a big task!

Modeling future activity rates

- Future activity rates are determined by numerous socioeconomic factors, e.g.
 - Population
 - land use
 - GDP overall or industry volume
 - number of households and vehicles

Examples of economic factors that determine future activity rates

- The world oil price influences the fuel consumption behaviour of industry as well as of private consumers and the competitiveness of alternative fuels
- The electricity price in a country influences consumption and the competitiveness of electricity towards other fuels in the end-use stage.
- The dynamic structure of the power generating sector determines future activity rates and fuel consumption. The development depends on e.g.:
 - o availability of domestic energy carriers
 - the legislative framework of the power sector (state-controlled vs. deregulated)
 - trade connections and national energy policies with regard to security of supply
 - o political and public attitude towards nuclear power
 - o national environmental policies and international agreements

Examples of economic factors that determine future activity rates

- The dynamic structure of the transport sector is driven by economic growth and rising incomes. Peoples' income is the most decisive factor that influences private car ownership.
 - Typically vehicle ownership grows relatively slowly at the lowest levels of per-capita income, then about twice as fast as income at middleincome levels (from \$3,000 to \$10,000 per capita), and reaches saturation at the highest levels of income.
 - Projecting these trends into the future would, for instance, mean that in India with a projected increase of per-capita GDP by 3.5 % annually in the 2002-2030 period, vehicle ownership would increase by 7 % annually until 2030 (Dargay, Gately, & Sommer, 2006).
- Similarly, economic growth and national and international trade are key factors that influence the activity rate in the freight sector.
- Urbanization and the growth of cities entails increasing needs for commuter transport service.

Modeling future emission factors

- Emission factors on technology level undergo external influences e.g. by environmental legislation requiring compliance with certain emission limit values.
- Consequences are retrofitting of existing technologies and improved performance of new technologies and phasing out of old technologies
- Modeling (average sectoral) future emission factors requires information about
 - 1. Phase-in of new technologies (e.g. vehicles with state-of-the-art flue gas cleaning)
 - 2. Phase-out of old polluting technologies (e.g. old vehicles without any flue gas cleaning)

Modeling the phase-out of "old" vehicles

Beta Model for Car Scrapping

Source: Peck (2003)

the international institute for industrial environmental economics Lund University, Sweden

Environmental polices and technology penetration

Technology penetration is influenced, amongst others by

- availability and costs of new technologies
- investment programs
- energy prices
- environmental legislation.
- The enforced penetration of technologies by environmental legislation may even cause the disappearance of certain technologies even in a short time perspective.
 - Example: mandated conversion of all public transport buses, taxis, and three-wheelers to compressed natural gas in Delhi, India in 2000–2002.

Emission scenario variants

- Simple baseline growth scenario
 - Considers only changes in the activity rate, emission factors in future years remain constant to the base year.
- Baseline scenario
 - Considers future activity rates and future emission factors taking into account the impacts of the presently decided legislation on emission controls.
- Alternative policy scenario
 - Considers future activity rates and future emission factors taking into account the impacts additional policies

Models and tools that may support emission scenarios

- the RAINS integrated assessment model for air pollution and greenhouse gases
- the TREMOVE transport model
- the TIMER energy demand and supply and emission model
- the Long-range Energy Alternatives Planning tool (LEAP)
- the MARKAL energy-economic-environmental model
- GAINS a model about Greenhouse Gas and Air Pollution Interactions and Synergies
- and many more....
- see RAPIDC scenario handbook for an overview

Scenario and IAM exercise

- More in the Scenario and Integrated Assessment Modeling exercise later
- For the exercise we will use the SIM-AIR tool to...
 - project future activity rates,
 - built some simple alternative policy scenarios,
 - find a cost-effective combination of prevention and control measures to attain emission reduction targets.

	A	θ	C	D	E	F	0	н	1	J	К	L	M	N	0	P	Q	R	S	T	U	V	W	X	γ
	_	Summary Sheet		CBL - Cm	ront Baca	line	TRI - T-	Trant Vent Re	colin		Tara			atrol	lad										
3		outlind y offeet		2007	2017	sinte	2017	nget rear ba	30 m	io, re-	CBL			iu vi	iou -	TBL					тс				
4		Total Emissions (tons/year)		CBL	TBL	1 Г	TC	Change		PM10	2278	12102	3390	2534		3141	15012	4755	3519		2892	14533	4302	3271	
5	1	PM10		106.841	145.479	1 1	134.322	-8%		Ems	10779	8556	12782	2686		13531	12520	17971	3818		13068	11210	16344	3416	
6	[S02		136.242	169.193] [164.587	-3%			4203	12782	13728	7350		5846	17971	19301	9627		5364	16344	17265	9172	
7	_ I	NOx		111.327	160.724	4 4	128.842	-25%			5418	2653	3164	2437		6993	3734,9	4491	3246		6713	3322	4078	3029	
8	L L	C02		22.978.354	26.845.623	JL	20.174.268	-29%			CPI					трі					TC				
10	26.6	Contribution (PM10 Emissions)									83	110	126	95	1	114	148	172	129		104	136	157	118	
11	Ĩ	Domestic		8%	7%	1 Г	7%	0%		PM10	117	129	131	102	•	159	179	180	140		146	162	164	128	
12		Open Burning		13%	13%	1 1	14%	-1%		Conc	111	126	138	110	1	152	173	191	150		139	158	173	138	
13	1	Industries		15%	14%	1 [15%	-1%			107	120	88	86	1	145	166	121	119		134	151	110	108	
14	1	Brick Kilns		1%	1%		1%	0%																	
15	_ I	PRD		26%	29%	4 1	29%	-1%			Optio	ns							i i si	Cost (15)	Min	Max		
16	ł	Power Plants		15%	23%	4 1	15%	-1%			Conve	rsion i	of Dies	sel to	CNG	Juses	2000	1	÷	750		45	2000		
18		Transport		2170	2070		1370	470			S	ranna	ine 2e	t to 4	of fre	2 146	2000	1	-	44	1	0	100		
19											ŝ	rappo	age 2s	t to 4	st for	3-Wh	0%	1	•		1	0	100		
20		Average PM10 Concentration		111	153	1 [139	-10%					Remov	al of	3-Wh	eelers	100%	4		26	1	0	100		
21		% Change from CBL			37%		25%						Truc	ks Us	sing B	ypass	0%	4	•		1	0	100		
22												CI	oal to l	LPG f	or Do	nestic	25%	4	<u> </u>	13		0	100		
23	-	Mortality Effects Reduced					1.137	Persons			к	erose	ne to l	LPG f	or Do	nestic	0%	-		-	1	0	100		
24	в	esp. Symptoms days Reduced					24.502	thousand da	ys			990	od to l	LPGI	or Do	nestic	20%		- í	- 274		0	100		
26		nealdi Costs Avoided					1.205	1111 035				In	noving	n Eff	in Indi	stries	0%	٩T	•	3/1		0	30		
27	F	or Target Controlled - Tons/vr		PM10	S02		NOx	C02				Pro	motina	Publ	ic Tra	nsport	0%	•	•	-	1	0	20		
28	[Domestic		9.586	6.261	1 [4.471	8.050.509					Int	rodu	ction o	IT BRT	50%	•		287	1	0	100		
29	- [Open Burning		18.836	18.836	1 [18.836	18.836					s	hift o	f Bric	Kins	0%	•				0	100		
30		Industries		19.784	39.568	11	3.510	-					18 M j	progr	am fo	r Cars	100%	4	-14	40		0	100		
31	-	Brick Kills		1.492	2.279	4 1	825	1.285.808				Par	ved Ro	bad v	vet Ca	aning	0%					0	100		
32		PRD Dower Plants		19.677	83,626	1 1	4 526	590 304			Col	n Narei	nprovil op.of.(ng Ut Gee 1	JOKSIC Favio 1		0%	i	Ť	-		0	100		
34		Transport		25.329	14.017	1 F	96.674	10.227.811				0	ontrolli	ing O	pen B	urning	0%	•	•	ŏ		0	100		
35	1	Total		134.322	164.587	1 1	128.842	20.174.268						-		-			Total	1.531	1				
36																		E	udget	\$500	millor	n			
37		Reduction		10%	3%	_	3%	3%					Ontim	izati	on S	dun.	1.0	e.,							
38		Desired desired			404440		4 1						opum	1200	011-54	reap	_	- 54	лие						
40		Desired (tons/year)		130,931	104.118		155.902	25.264.254			Copy	to Sc	enari	01	Co	py to S	cenari	0 2	Cop	v to Sce	nario	3			
41	1	Target (tons/vear)		130.004	163.510		154.686	24.887.776			2.503				_				-						
14 4		Schematics Scen Comps	Sur	nmary /H	elp 🖌 Hea	alth 1	mpacts	Emiss Distr	ibutio	n / E	Domest	c Zh	/ehide	s /	Brick	ilns 👔	4							l I	١Ē
Bere	it .	(composition and a composition	,														Sur	nme=)	100				NE		

